Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Screen ; 13(8): 766-76, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18753688

RESUMO

Fluorescent correlation spectroscopy (FCS) was used to measure binding affinities of ligands to ligates that are expressed by phage-display technology. Using this method we have quantified the binding of the 14-3-3 signaling protein to artificial peptide ligand. As a ligand we used the R18 artificial peptide expressed as a fusion in the cpIII coat protein that is present in 3 to 5 copies in an M13 phage. Comparisons of binding affinities were made with free R18 ligands using FCS. The result showed a relatively high binding affinity for the phage-displayed R18 peptide compared with binding to free fluorescently labeled R18. Quantification was supported by titration of the phage numbers using atomic force microscopy (AFM). AFM was shown to accurately determine phage numbers in solution as a good alternative for electron microscopy. It was shown to give reliable data that correlated perfectly with those of the viable phage numbers determined by classical bacterial infection studies. In conclusion, a very fast and sensitive method for the selection of new peptide ligands or ligates based on a quantitative assay in solution has been developed.


Assuntos
Proteínas 14-3-3/metabolismo , Biblioteca de Peptídeos , Peptídeos/metabolismo , Espectrometria de Fluorescência/métodos , Sequência de Aminoácidos , Ligantes , Microscopia de Força Atômica , Dados de Sequência Molecular , Peptídeos/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia
2.
Mol Plant Microbe Interact ; 19(3): 215-26, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16570652

RESUMO

A proportion of the Nod factors of some Rhizobium leguminosarum bv. trifolii strains is characterized by the presence of highly unsaturated fatty acyl chains containing trans double bonds in conjugation with the carbonyl group of the glycan oligosaccharide backbone. These fatty acyl chains are C18:3, C20:3, C18:4, or C20:4 and have UV-absorption maxima at 303 and 330 nm. These Nod factors are presumed to be important for host-specific nodulation on clover species. However, in wild-type R. leguminosarum bv. trifolii ANU843, Nod factors with these characteristic acyl chains were not observed using standard growth conditions. They were observed only when nod genes were present in multiple copies or when transcription was artificially increased to higher levels by introduction of extra copies of the transcriptional regulator gene nodD. In a screen for the genetic requirements for production of the Nod factors with these characteristic structures, it was found that the region downstream of nodF and nodE is essential for the presence of highly unsaturated fatty acyl moieties. Mu-lacZ insertion in this region produced a mutant that did not produce detectable levels of the highly unsaturated fatty acyl-bearing Nod factors. The Mu-lacZ insertion was translationally fused to a putative new gene, designated nodR, in the nodE-nodL intergenic region; however, no predicted function for the putative NodR protein has been obtained from database homology searches. In a set of 12 wild-type strains of R. leguminosarum by. trifolii originating from various geographical regions that were analyzed for the presence of a nodR-like gene, it was found that seven strains carry a homologous NodR open reading frame. Taken together, our results suggest a tightly controlled regulation of nod genes, in which we propose that it is the balance of transcriptional levels of nodFE and the nodRL genes that is critical for determining the presence of highly unsaturated fatty acyl moieties in the Nod factors produced by R. leguminosarum bv. trifolii.


Assuntos
Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Rhizobium leguminosarum/metabolismo , Proteínas de Bactérias/genética , Configuração de Carboidratos , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos/química , Medicago/metabolismo , Medicago/microbiologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Raízes de Plantas/metabolismo , Rhizobium leguminosarum/genética , Especificidade da Espécie
3.
Mol Plant Microbe Interact ; 18(5): 414-27, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15915640

RESUMO

Our comparative studies on the promoter (pr) activity of Enod40 in the model legume Lotus japonicus in stably transformed GusA reporter lines and in hairy roots of L. japonicus demonstrate a stringent regulation of the Enod40 promoter in the root cortex and root hairs in response to Nod factors. Interestingly, the L. japonicus Enod40-2 promoter fragment also shows symbiotic activity in the reverse orientation. Deletion analyses of the Glycine max (Gm) Enod40 promoter revealed the presence of a minimal region -185 bp upstream of the transcription start. Stable transgenic L. japonicus reporter lines were used in bioassays to test the effect of different compounds on early symbiotic signaling. The responses of prGmEnod40 reporter lines were compared with the responses of L. japonicus (Lj) reporter lines based on the LjNin promoter. Both reporter lines show very early activity postinoculation in root hairs of the responsive zone of the root and later in the dividing cells of nodule primordia. The LjNin promoter was found to be more responsive than the GmEnod40 promoter to Nod factors and related compounds. The use of prGmEnod40 reporter lines to analyze the effect of nodulin genes on the GmEnod40 promoter activity indicates that LJNIN has a positive effect on the regulation of the Enod40 promoter, whereas the latter is not influenced by ectopic overexpression of its own gene product. In addition to pointing to a difference in the regulation of the two nodulin genes Enod40 and Nin during early time points of symbiosis, the bioassays revealed a difference in the response to the synthetic cytokinin 6-benzylaminopurine (BAP) between alfalfa and clover and L. japonicus. In alfalfa and clover, Enod40 expression was induced upon BAP treatment, whereas this seems not to be the case in L. japonicus; these results correlate with effects at the cellular level because BAP can induce pseudonodules in alfalfa and clover but not in L. japonicus. In conclusion, we demonstrate the applicability of the described L. japonicus reporter lines in analyses of the specificity of compounds related to nodulation as well as for the dissection of the interplay between different nodulin genes.


Assuntos
Lotus/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genes Reporter , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
4.
Plant Mol Biol ; 52(6): 1169-80, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14682616

RESUMO

For this work, Lotus japonicus transgenic plants were constructed expressing a fusion reporter gene consisting of the genes beta-glucuronidase (gus) and green fluorescent protein (gfp) under control of the soybean auxin-responsive promoter GH3. These plants expressed GUS and GFP in the vascular bundle of shoots, roots and leafs. Root sections showed that in mature parts of the roots GUS is mainly expressed in phloem and vascular parenchyma of the vascular cylinder. By detecting GUS activity, we describe the auxin distribution pattern in the root of the determinate nodulating legume L. japonicus during the development of nodulation and also after inoculation with purified Nod factors, N-naphthylphthalamic acid (NPA) and indoleacetic acid (IAA). Differently than white clover, which forms indeterminate nodules, L. japonicus presented a strong GUS activity at the dividing outer cortical cells during the first nodule cell divisions. This suggests different auxin distribution pattern between the determinate and indeterminate nodulating legumes that may be responsible of the differences in nodule development between these groups. By measuring of the GFP fluorescence expressed 21 days after treatment with Nod factors or bacteria we were able to quantify the differences in GH3 expression levels in single living roots. In order to correlate these data with auxin transport capacity we measured the auxin transport levels by a previously described radioactive method. At 48 h after inoculation with Nod factors, auxin transport showed to be increased in the middle root segment. The results obtained indicate that L. japonicus transformed lines expressing the GFP and GUS reporters under the control of the GH3 promoter are suitable for the study of auxin distribution in this legume.


Assuntos
Ácidos Indolacéticos/metabolismo , Lotus/metabolismo , Raízes de Plantas/metabolismo , Alphaproteobacteria/crescimento & desenvolvimento , Transporte Biológico , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde , Ácidos Indolacéticos/farmacologia , Lipopolissacarídeos/farmacologia , Lotus/genética , Lotus/crescimento & desenvolvimento , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Ftalimidas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Elementos de Resposta/genética , Rhizobium/crescimento & desenvolvimento , Simbiose
5.
Funct Plant Biol ; 30(12): 1219-1232, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32689103

RESUMO

Rhizobium strain 042B(s) is able to nodulate both soybean and alfalfa cultivars. We have demonstrated, by mass spectrometry, that the nodulation (Nod) factors produced by this strain are characteristic of those produced by Sinorhizobium fredii, which typically nodulates soybean; they have 3-5 N-acetylglucosamine (GlcNAc) residues, a mono-unsaturated or saturated C16, C18 or C20 fatty-acyl chain, and a (methyl)fucosyl residue on C6 of the reducing-terminal GlcNAc. In order to study Rhizobium strain 042B(s) and its nodulation behaviour further, we introduced an insertion mutation in the noeL gene, which is responsible for the presence of the (methyl)fucose residue on the reducing terminal GlcNAc of the Nod-factors, yielding mutant strain SVQ523. A plasmid (pHM500) carrying nodH, nodP and nodQ, the genes involved in sulfation of Nod-factors on C6 of the reducing-terminal GlcNAc, was introduced into SVQ523, generating SVQ523.pHM500. As expected, strain SVQ523 produces unfucosylated Nod-factors, while SVQ523.pHM500 produces both unfucosylated and unfucosylated sulfated Nod-factors. Plant tests showed that soybean nodulation was reduced if the inoculant (SVQ523.pHM500) produced sulfated Nod-factors. In the Asiatic alfalfa cultivar Baoding, SVQ523 (absence of a substitution at C6) failed to nodulate, but both 042B(s) (fucosyl at C6) and SVQ523.pHM500 (sulfate at C6) formed nodules. In contrast, SVQ523 showed enhanced nodulation capacity with the western alfalfa cultivars ORCA and ARC. These results indicate that Nod-factor sulfation is not a requisite for S. fredii to nodulate alfalfa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...